Sums of seven octahedral numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On sums of seven cubes

We show that every integer between 1290741 and 3.375× 1012 is a sum of 5 nonnegative cubes, from which we deduce that every integer which is a cubic residue modulo 9 and an invertible cubic residue modulo 37 is a sum of 7 nonnegative cubes.

متن کامل

Aliquot sums of Fibonacci numbers

Here, we investigate the Fibonacci numbers whose sum of aliquot divisors is also a Fibonacci number (the prime Fibonacci numbers have this property).

متن کامل

Sums of Three Squareful Numbers

We investigate the frequency of positive squareful numbers x, y, z 6 B for which x + y = z and present a conjecture concerning its asymptotic behaviour. Mathematics Subject Classification (2010). 11D45 (11P05, 14G05).

متن کامل

Sums of Betti numbers in arbitrary characteristic -1 Sums of Betti numbers in arbitrary characteristic

Sums of Betti numbers in arbitrary characteristic Nicholas M. Katz Introduction In [Mil], Milnor gave an explicit upper bound for the sum of the Betti numbers of a complex affine algebraic variety V. If V is defined in ^N, N ≥ 1, by r ≥ 1 equations Fi, i =1 to r, all of degree ≤ d, Milnor showed ‡i h i(V, $) ≤ d(2d-1)2N-1. Oleinik [Ol] and Thom [Th] gave similar results. It is standard (cf. the...

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2015

ISSN: 0024-6107,1469-7750

DOI: 10.1112/jlms/jdv061